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Abstract

Presented herein are exact vibration mode shapes and modal stress-resultants for freely vibrating, circular
Mindlin plates with free edges. These documented solutions are important in the hydroelastic analysis of
very large circular floating structures (VLFS) which are commonly modeled as plates with free edges. The
exact vibration solutions will enable engineers to obtain a very accurate set of deflections and stress-
resultants for circular VLFS under the action of waves. Such benchmark results will allow engineers and
researchers to ascertain the accuracy of whatever numerical techniques that are eventually proposed for
predicting accurate hydroelastic responses of arbitrarily shaped VLFS.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In the hydroelastic analysis of very large floating structures such as the one shown in Fig. 1, the
pontoon-type structures are often modeled as huge plates with free edges [1–3]. The analysis
consists of separating the hydrodynamic analysis from the dynamic response analysis of the very
large circular floating structures (VLFS). The deflection of the plate is decomposed into vibration
modes. Then the hydrodynamic radiation forces are evaluated for unit amplitude motions of each
mode. A numerical method, such as the Galerkin’s method (by which the governing equation of
the plate is approximately satisfied), is used to determine the modal amplitudes. The modal
responses are then summed up to obtain the total response.

ARTICLE IN PRESS

*Corresponding author. Tel.: +61-2-4736-0395; fax: +61-2-4736-0833.

E-mail addresses: cvewcm@nus.edu.sg (C.M. Wang), y.xiang@uws.edu.au (Y. Xiang).

0022-460X/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jsv.2003.08.010



Recently, Wang et al. and Xiang et al. [4,5] showed that the use of the classical thin plate theory
for modelling the pontoon-type VLFS and well-known numerical methods (such as the Ritz
method and the finite element method) for vibration analysis yields modal stress-resultants that:
(a) do not satisfy the natural boundary conditions and (b) contain oscillations/ripples in their
distributions, casting doubts on the accuracy of their peak values. When these modal solutions are
used in the hydrodynamic analysis, the final stress-resultants will contain these aforementioned
inaccuracies.
Wang et al. [6,7] proposed some remedies for the problem that involve the use of the

more refined Mindlin plate theory (that incorporates the effects of transverse shear deformation
and rotary inertia), thereby improving on the accuracy of the stress-resultants, especially the
transverse shear forces and twisting moments. Moreover, the remedies involve adding
penalty functions to the energy functional to enforce the satisfaction of the natural boundary
conditions as well as using a post-processing smoothing technique to erase the oscillations.
However, in order to really assess how good these proposed remedies, one needs exact solutions
to serve as benchmark checks. Prompted by this need, the authors recognize that exact
solutions can be obtained for circular plates with free edges. Although exact vibration
frequencies for circular plates with free edges are already available in the literature [8,9], their
corresponding modal stress-resultants are hitherto not available. Thus, the aim of this study
is to document the exact mode shapes and modal stress-resultants for circular Mindlin plates
so that researchers may readily use them in the hydroelastic analysis of circular VLFS. The
accurate deflections and stress-resultants of such circular VLFS will be extremely valuable
to ascertain the accuracy of whatever numerical techniques that are eventually proposed
for predicting accurate hydroelastic responses of arbitrarily shaped VLFS under the action of
waves.
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Fig. 1. A sewage treatment plant on a circular VLFS (Courtesy of the Floating Structures Association of Japan).

C.M. Wang et al. / Journal of Sound and Vibration 276 (2004) 511–525512



2. Mathematical modelling

Consider an isotropic, flat circular plate of radius R; thickness h; mass density r; the Poisson ratio
n; Young’s modulus E and shear modulus G ð¼ E=½2ð1þ nÞ�Þ: The plate is free from any
attachment/support as shown in Fig. 2. The problem at hand is to determine the modal displacement
fields and stress-resultants for the freely vibrating circular plate. The modelling of the plate is based
on the Mindlin shear deformable plate theory [10]. The obtained modal displacements and stress-
resultants may be used for the analysis and design of VLFS circular structures.
Although the exact analysis of vibration of circular Mindlin plates was carried out by previous

researchers [8,9], the mathematical modelling of the analysis is briefly presented herein for readers’
easy reference. Mindlin and Deresiewicz [8] cleverly proposed that the displacement fields of the
plate may be expressed as functions of three potentials Y1; Y2 and Y3:
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Fig. 2. Geometry and the polar co-ordinates system of a circular Mindlin plate.
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in which r and y are the radial and circumferential co-ordinates of the polar co-ordinate system, w;
cr and cy the transverse displacement and rotations in the Mindlin plate theory, %w is the
non-dimensionalized transverse displacement of the plate, w the non-dimensionalized radial
co-ordinate (see Fig. 2), k2 the shear correction factor, and l the angular frequency parameter.
Based on these potentials, the governing differential equations of the vibrating circular plate, in

polar co-ordinates, may be transformed into three harmonic equations. The solutions of the three
harmonic equations can be expressed as

Y1 ¼ A1RnðD1wÞ cos ny; Y2 ¼ A2RnðD2wÞ cos ny; Y3 ¼ A3RnðD3wÞ sin ny; ð8Þ

where

Dj ¼
dj if d2j X0;

ImðdjÞ if d2j o0;

(
j ¼ 1; 2; 3; ð9Þ

RnðDjwÞ ¼
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in which Aj ð j ¼ 1; 2 and 3) are the arbitrary constants that will be determined by the free
boundary conditions of the plate, n is the number of nodal diameters of a vibration mode, and
Jnð�Þ and Inð�Þ are the first kind and the modified first kind Bessel functions of order n:
The periphery conditions of a free circular Mindlin plate at the edge are defined as follows
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The displacement fields and the stress-resultants of the circular plate may be expressed in terms
of the arbitrary constants Aj; j ¼ 1; 2 and 3 [8,9,11]. In view of Eqs. (1)–(3) and (8), a
homogeneous system of equations can be derived by implementing the free boundary conditions
of the plate along the circular edge [Eq. (11)]
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and K is a 3� 3 matrix. The angular frequency o of the plate is evaluated by setting the
determinant of K in Eq. (12) to be zero.
The modal displacement fields w; cr and cy and modal stress-resultants Qr; Mrr and Mry are

calculated after the angular frequency o and the corresponding eigenvector ½A1 A2 A3�T are
obtained. The maximum transverse displacement of the plate in vibration is normalized by setting

wmax

R

��� ��� ¼ j %wmaxj ¼ 1; ð13Þ

and the corresponding modal stress-resultants are presented in their non-dimensional forms as
follows

%Qr ¼
R2

D
Qr; %Mrr ¼

R

D
Mrr; %Mry ¼

R

D
Mry: ð14Þ

3. Results and discussions

The Poisson ratio n ¼ 0:3 and the shear correction factor k2 ¼ 5
6
are adopted for all calculations.

Exact vibration frequency parameters l ¼ oR2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for free circular Mindlin plates are

presented in Table 1. The number of nodal diameters n varies from 1 to 4 and the mode sequence
number s for a given n value changes from 1 to 4, respectively.
In the hydrodynamic analysis of a VLFS structure, the mode shapes and modal stress-resultants

from the free vibration analysis of the structure are utilized to predict the dynamic responses of
the structure. The exact mode shapes and modal stress-resultants for free circular Mindlin plates
are presented herein, thus serve as important benchmark values for researchers to verify their
numerical models for circular Mindlin plate analysis. The cases in Table 1 that are highlighted
by boldfacing the values have their modal shapes and modal stress-resultants depicted in Figs. 3
and 4, respectively. Note that the modal displacement fields and modal stress-resultants in Figs. 3
and 4 are plotted along radial direction where their peak values are found. The modal
displacements %w and cr; and modal stress-resultants %Qr and %Mrr in the circumferential direction
vary with cos ny; while the modal displacement cy and modal stress-resultant %Mry vary with
sin ny:
Figs. 3a and 4a present the normalized modal displacement fields and modal stress-resultants

along the radial direction for a thinner circular Mindlin plate (h=R ¼ 0:01) and a thicker plate
(h=R ¼ 0:10), respectively. The plates vibrate in axisymmetric modes (n ¼ 0). The modal
displacement fields and modal stress-resultants for the thinner and thicker plates show very
similar trends. The values of the modal rotation cr and the modal stress-resultants %Qr and %Mrr for
the thicker plate are smaller than the ones for the thinner plate. As expected, the rotation cy and
moment %Mry on the whole plate and the rotation cr and shear force %Qr at the centre of the plates
(w ¼ r=R ¼ 0) are zero due to the plates vibrating in axisymmetric modes. The modal stress-
resultants %Qr; %Mrr and %Mry vanish at the plate free edge (w ¼ r=R ¼ 1). The number of nodal
circumferential lines of the modal displacements %w and cr and modal stress-resultant %Mrr

increases from 1 to 4 as the mode sequence number s varies from 1 to 4. However, the number of
nodal circumferential lines of the modal stress-resultant %Qr changes from 2 to 5 while the mode
sequence number s increases from 1 to 4.
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Figs. 3b and 4b show the normalized modal displacement fields and modal stress-resultants
along the radial direction for a thinner circular Mindlin plate (h=R ¼ 0:01) and a thicker plate
(h=R ¼ 0:10), respectively. The vibration of the plates is non-axisymmetric. Similar trends are
observed for the modal displacement fields and modal stress-resultants of the thinner and thicker
plates. The values of the modal displacements cr and cy and the modal stress-resultants %Qr and
%Mrr for the thicker plate are smaller than the ones for the thinner plate. The mode sequence
number s is fixed at 1 and the number of nodal diameters n varies from 1 to 4. It is interesting to
observe that there are two nodal circumferential lines for the modal displacement %w if the plates
vibrate with one nodal diameter (n ¼ 1). The modes with two nodal diameters (n ¼ 2) are the
fundamental modes as shown by the frequency values in Table 1. The modal displacement fields
and stress-resultants for the modes with 3 and more nodal diameters (i.e. nX3) show similar
trends in general. The modal displacement fields %w; cr and cy and stress-resultants %Qr; %Mr and
%Mry are zero at the centre of the plates (w ¼ r=R ¼ 0). The values of the displacement fields %w; cr

and cy increase monotonically with increasing radial co-ordinate (w ¼ r=R) except for the rotation
cy of the thicker plate near the free edge where a slight decrease of cy is observed. The stress-
resultants %Qr; %Mrr and %Mry vanish at the plate free edge for all cases shown in Figs. 3b and 4b. It is
noted that for the thinner plate (h=R ¼ 0:01), there are sharp variations in stress-resultants %Qr and
%Mry near the vicinity of the free edge when the number of nodal diameters n varies from 2 to 4.
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Table 1

Frequency parameters l ¼ oR2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for free circular Mindlin plates (n ¼ 0:3; k2 ¼ 5=6)

n s Thickness ratio, h=R

0.005 0.01 0.10 0.15 0.20

0 1 9.00279 9.00175 8.86877 8.71132 8.50800

0 2 38.4365 38.4164 36.0592 33.7076 31.1562

0 3 87.7151 87.6099 76.7577 67.9521 59.7944

0 4 156.706 156.370 126.483 106.673 90.3596

1 1 20.4698 20.4613 19.7165 18.9273 17.9939

1 2 59.7918 59.7396 54.2993 49.4103 44.5225

1 3 118.889 118.692 100.071 86.4264 74.5493

1 4 197.689 197.151 153.044 126.415 105.419

2 1 5.35655 5.35453 5.27822 5.20584 5.11560

2 2 35.2426 35.2140 33.0500 30.9716 28.7085

2 3 84.3196 84.2088 73.9519 65.6276 57.8636

2 4 153.183 152.848 123.973 104.738 88.8221

3 1 12.4320 12.4237 12.0667 11.7271 11.3209

3 2 52.9684 52.9040 48.2623 44.1745 40.0346

3 3 111.856 111.655 94.6541 82.1058 71.0638

3 4 190.492 189.964 148.269 122.837 102.640

4 1 21.8188 21.7983 20.8089 19.8850 18.8351

4 2 73.4713 73.3521 64.9534 58.1397 51.6622

4 3 142.283 141.953 116.137 98.6884 84.0671

4 4 230.727 229.944 172.818 140.694 116.017

Note: n is the number of nodal diameters of the mode and s is the mode sequence for a given n value. The cases with the

boldfaced values have their modes and modal stress-resultants presented.
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Fig. 3. (a) Mode shapes and modal stress-resultants for free circular Mindlin plates with thickness ratio h=R ¼ 0:01:
The number of nodal diameters n ¼ 0 (axisymmetric modes). (b) Mode shapes and modal stress-resultants for free

circular Mindlin plates with thickness ratio h=R ¼ 0:01: The number of nodal diameters is n ¼ 1; 2, 3 and 4,

respectively.

C.M. Wang et al. / Journal of Sound and Vibration 276 (2004) 511–525 517



ARTICLE IN PRESS

  

  

  

  

Fig. 3 (continued).
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Fig. 4. (a) Mode shapes and modal stress-resultants for free circular Mindlin plates with thickness ratio h=R ¼ 0:10:
The number of nodal diameters is n ¼ 0 (axisymmetric modes). (b) Mode shapes and modal stress-resultants for free

circular Mindlin plates with thickness ratio h=R ¼ 0:1: The number of nodal diameters is n ¼ 1; 2, 3 and 4, respectively.
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Fig. 4 (continued).
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For the thicker plate (h=R ¼ 0:10), however, the variation of the stress-resultants %Qr; %Mrr and %Mry

near the vicinity of the free edge becomes quite smooth (see Figs. 4b and c) and the peak values of
the shear force %Qr near the free edge for the thicker plate is much smaller than the ones for the
thinner plate.
Tables 2 and 3 present the peak values and the corresponding locations of the modal

displacement fields and modal stress-resultants for selected cases. These exact peak values are
valuable for checking the convergence and accuracy of numerical approaches for analysing the
vibration of Mindlin plates.
Fig. 5 presents the modal displacement %w and the modal stress-resultants %Qr; %Mrr and %Mry for a

free circular Mindlin plate obtained by the present analytical method and the p-Ritz method [12].
The plate thickness ratio h=R is taken to be 0.01 and the number of nodal diameters n and the
mode sequence s are set to be 4 and 1, respectively. The number of polynomial terms in the Ritz
solution is taken to be 16 [12]. The frequency parameter l from the p-Ritz method is 21.8074
which is very close to the one from the analytical method (l ¼ 21:7983). It is observed that the
modal displacement %w from the p-Ritz method and the analytical method is almost identical.
However, the modal stress-resultant %Qr from both methods shows large discrepancies. The p-Ritz
stress-resultants %Qr and %Mry do not satisfy the free edge conditions. The p-Ritz shear force %Qr

oscillates about the exact solution as the radial co-ordinate w varies, and the values of Ritz %Qr are
erroneous near the centre of the plate. All Ritz stress-resultants %Qr; %Mrr and %Mry become very
large when the radial co-ordinate w approaches the plate centre (w-0).
Fig. 6 compares the exact modal displacement %w and modal stress-resultants %Qr; %Mrr and %Mry

for a free circular plate obtained on the basis of the classical thin plate theory [13] and of the
Mindlin plate theory. The normalized effective shear force %Vr is calculated based on its definition
in the classical thin plate theory and is also shown in Fig. 6. The plate thickness ratio h=R is taken
to be 0.01 and the number of nodal diameters n and the mode sequence s are set to be 4 and 1,
respectively. It is observed that the modal displacements %w from the thin and thick plate theories
are almost the same. The modal stress-resultants from both theories are also close to each other
except for %Qr and %Mry near the vicinity of the plate edge. Unfortunately, the discrepancies found
at the vicinity of the free edge also contain the peak values of the stress-resultants. Clearly, the
natural boundary conditions, i.e., %Qr ¼ 0 and %Mry ¼ 0; are not satisfied when using the classical
thin plate theory. This is due to the fact that the free edge conditions for a circular plate based on
the thin plate theory are %Vr ¼ 0 and %Mrr ¼ 0 [14]. When such thin plate modal stress-resultants are
used for the hydrodynamic analysis of VLFS, the stress-resultants obtained are invariably
erroneous.

4. Concluding remarks

We have presented herein the exact vibration solutions, including the modal stress-resultants, of
a circular Mindlin plate with free edge. The results displayed include exact peak values of modal
stress-resultants which are difficult to obtain using numerical methods. Comparison of these peak
values obtained using the classical thin plate theory and the Mindlin plate theory show significant
differences as the plate thickness increases and as the plate vibrates at higher modes. The exact
free vibration solutions when employed in the hydroelastic analysis will yield highly accurate
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Table 2

The peak values and the corresponding locations of the modal displacement fields for free circular Mindlin plates

h=R n s Locations and peak values of modal displacement fields

w %wmax w %wmin w cr max w cr max w cy max w cr min

0.01 0 1 1 0.742110 0 �1 0 0 0.745 �2.36273 — — — —

0 2 0 1 0.609 �0.371550 0.291 3.56484 0.939 �2.91260 — — — —

0 3 0.409 0.404079 0 �1 0.564 3.19239 0.200 �5.43747 — — — —

0 4 0 1 0.309 �0.402400 0.146 7.25302 0.427 �4.31669 — — — —

1 1 1 0.971399 0.391 �1 0 3.98660 0.882 �4.48217 0.998 0.953097 0 �3.98660
2 1 1 1 0 0 0 0 1 �1.61449 0.998 1.99329 0 0

3 1 1 1 0 0 0 0 1 �2.11540 0.998 2.98159 0 0

4 1 1 1 0 0 0 0 1 �2.56224 0.998 3.96533 0 0

0.10 0 1 1 0.738124 0 �1 0 0 0.745 �2.32455 — — — —

0 2 0 1 0.609 �0.368346 0.291 3.21354 0.943 �2.71918 — — — —

0 3 0.409 0.405187 0 �1 0.564 2.56010 0.200 �4.41299 — — — —

0 4 0 1 0.309 �0.402123 0.145 5.16760 0.986 �3.27188 — — — —

1 1 1 0.95898 0.391 �1 0 3.76390 0.891 �4.34510 0.979 0.781953 0 �3.76390
2 1 1 1 0 0 0 0 1 �1.62462 0.978 1.92111 0 0

3 1 1 1 0 0 0 0 1 �2.14105 0.977 2.77123 0 0

4 1 1 1 0 0 0 0 1 �2.60297 0.977 3.54901 0 0

Note: n is the number of nodal diameters of the mode and s is the mode sequence for a given n value.
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Table 3

Peak values and corresponding locations of the modal stress-resultants for free circular Mindlin plates

h=R n s Locations and peak values of modal stress-resultants

w %Qr max w %Qr min w %Mrr max w %Mrr min w %Mry max w %Mry min

0.01 0 1 0.536 14.0887 1 0 0.962 0.038757 0 �6.94744 — — — —

0 2 0.827 59.9881 0.300 �139.090 0 24.8036 0.591 �16.5590 — — — —

0 3 0.200 476.498 0.573 �287.098 0.391 35.8292 0 �56.9108 — — — —

0 4 0.427 675.347 0.145 �1135.98 0 101.479 0.291 �64.0755 — — — —

1 1 0.727 53.4462 0 �84.7962 0.979 0.067716 0.400 �17.8019 0.527 4.85809 0 0

2 1 0.509 2.95972 0.990 �1.45690 0.9273 0.034262 0 �1.78985 0 1.78985 1 0

3 1 0.627 10.0444 0.990 �5.74364 0.900 0.316567 0.373 �1.77989 0.618 2.77810 0 0

4 1 0.691 22.4744 0.991 �13.8572 0.891 0.958030 0.464 �2.01492 0.764 4.43478 0 0

0.10 0 1 0.536 13.6593 1 0 0.964 0.033507 0 �6.82216 — — — —

0 2 0.818 51.6316 0.300 �122.608 0 22.4005 0.591 �15.1111 — — — —

0 3 0.200 365.435 0.573 �222.106 0.382 29.0071 0 �46.2034 — — — —

0 4 0.427 440.725 0.145 �742.776 0 72.3533 0.291 �45.7085 — — — —

1 1 0.727 49.0370 0 �79.2851 0.992 0.007382 0.409 �16.9500 0.527 4.62564 1 0

2 1 0.500 2.77106 0.963 �0.557011 1 0 0 �1.76356 0 1.76356 1 0

3 1 0.618 9.01726 0.968 �1.76381 0 0 0.382 �1.74232 0.636 2.73075 1 0

4 1 0.682 19.2668 0.973 �3.47288 0.882 0.196978 0.482 �1.95099 0.818 4.39324 1 0

Note: n is the number of nodal diameters of the mode and s is the mode sequence for a given n value.
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deflections and stress-resultants of circular VLFS under the action of waves as reported in a recent
paper [14]. The availability of such benchmark hydroelastic responses of VLFS will be extremely
useful to engineers and researchers who are developing numerical techniques for the hydroelastic
analysis of arbitrarily shaped VLFS.
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